安全须知

- 为了产品的安全使用,请您务必阅读本手册。
- 请妥善保管本手册,并保证将其交到最终用户手中。
- 请勿在电缸通电状态下, 拆下外罩、电缆、连接器以及选 购设备,否则会导致触电、产品停止运行或烧坏。

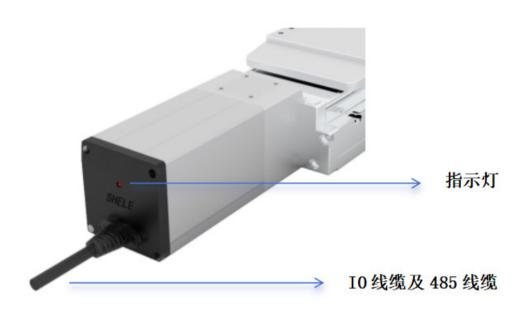
- 请在与产品相符的电源规格(直流、电压、电流)下使用,否则会导 致产品烧坏、触电或火灾。
- 请务必将电缸接地端子与接地极连接,否则会导致触电或火灾。
- 请勿对产品进行拆卸、修理或改造,否则会导致为火灾或故障。 拆卸、 修理或改造过的产品均不属于保修范围。
- 请由操作熟练的技术人员进行正确规范安装,否则会导致触电或受伤。
- 与机械连接后开始运行时,请使设备处于可随时紧急停止的状态,否 则会导致受伤。
- 请绝对不要触摸产品的内部,否则会导致触电。
- 系统错误也可能造成设备的损坏或者人身伤害。我们不保证此产品适 合您的特定应用,我们也无法为您系统设计的可靠性承担责任。

- 为了产品的安全使用,请您务必阅读本手册。
- 请妥善保管本手册,并保证将其交到最终用户手中。
- 请勿在电缸通电状态下,拆下外罩、电缆、连接器以及选 购设备,否则会导致触电、产品停止运行或烧坏。

- 指定的电压变动范围内供给输入电源,否则会导致伺服单元损坏。
- 请使用噪音滤波器等减小电磁干扰的影响,否则会对伺服单元附近使用的电子设备造成电磁干扰。
- 伺服单元与伺服电机请按照指定的组合使用。
- 请勿用湿手触摸伺服单元及伺服电机,否则会导致产品故障。
- 关电后请至少等待 10 秒钟再接触产品或移除接线。容性器件在断电后仍可能储存造成危险的电能,需要一定时间来释放。为了确保安全,可以在接触产品前用万用表测量一下。
- 该产品内部的某些元器件可能会因为受到外部静电影响而损坏。操作人员接触产品前应保证自身无静电,避免接触易带静电的物体(化学纤维、塑料薄膜等)。将产品放在可导电的平面上。
- 严禁在系统运行的时候热插拔电缆,因热插拔产生的电弧 对于操作人员和设备都有可能产生危害。

手册说明

章节	标题	内容简介
1	电缸基本信息	系列产品简介
2	安装及注意点	介绍电缸安装规格及硬件接口
3	信号及接线	电缸外部接口定义及连接所需信息
4	工作模式	电缸常规工作模式及设置信息
5	报警及处理	电缸常见报警及排查处理方案等信息


舍勒智能电缸使用手册	1
一 . 电气规格	5
二 . 产品接口定义	6
三 . 产品接线图	7
四. 工作模式介绍	8

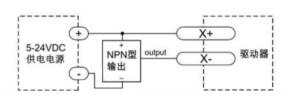
一、电气规格

	35 驱控一体电机	42 驱控一体电机	57 驱控一体电机		
工作电压范围	9~36V	8~48V 24~60			
驱动输出电流	0.2~2.0A	0.2~3.2A	0.5~5.0A		
	控制	模式			
V	IO 定位	两点定位 恒力矩运行 力矩回零			
√	485	MODBI	US RTU		
V	脉冲	单端脉冲加方向控制 差分脉冲加方向控制			
通用 IO 口					
√	通用 DI	3 路输入端口 输入公共端为低电平时,X接3.3~24V高电号;输入公共端为低电平时,X接低电平信号。			
V	通用 DO	3 路输出端口,输出公共端 0v, 输出低电平输出公共端 24V, 输出高电平。			

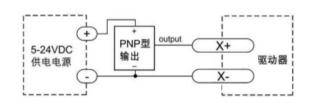
二、产品接口定义

1. 产品接口定义

LED 编码	状态	
	绿灯常亮	电机运行中
	绿灯闪烁	电机停止
	一红一绿	驱动器过流
	两红一绿	电机绕组开路
	三红一绿	驱动器输入过压
	四红一绿	驱动器输入欠压
	五红一绿	位置超差
	六红一绿	检测编码器错误

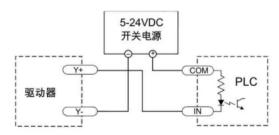

三、产品接线图

1. IO 线缆定义

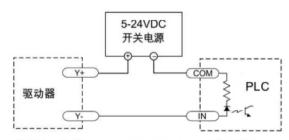

颜色	定义	功能
红 (粗)	24V	电源正 (24-60V)
蓝 (粗)	0V	电源 - 地
淡蓝	Xcom	输入公共端 (NPN 和 PNP)
黄色	X0	输入 0
绿色	X1	输入1
橙色	X2	输入 2
灰色	Y2	输出 2
粉色	Y1	输出 1
黑色	YO	输出 0
紫色	Ycom	输出公共端 (NPN 和 PNP)
白色	485+	通讯端口 (MODBUS-RTU)
棕色	485-	通讯端口 (MODBUS-RTU)
屏蔽层	-	接地

2. 产品接线图

• 输入接线



将输入连接至NPN型输出



将输入连接至PNP型输出

• 输出接线

将输出Y接成sinking型输出,与PLC的输入相连

将输出Y接成sourcing型输出,与PLC的输入相连

四、工作模式介绍

1. 工作模式介绍

• IO 控制

X0	X1	X2	功能
1	0	0	运动 到位置 1
0	1	0	运动到位置 2
0	0	1	回零
1	1	0	正向走扭矩
0	1	1	反向走扭矩
1	1	1	清除报警

IO 控制时输入引脚组合使用,作为各功能的信号,例:同时给 X0 和 X2 信 号,则电缸会向正向进行恒力矩的动作(其余动作参见表格)。

恒扭矩功能注意点:

- (1). 实际推压力会有或多或少的误差, 尽量在20~70%范围内设定电流限制值。
- (2). 推压开始位置不能距离工件距离太远

输出 输出	功能
YO	报警信号
Y1	运动完成
Y2	回零完成

输出引脚对应单独的功能。

位置 1,位置 2以及回零扭矩等信息可通过舍勒电缸调试软件去设置。

2. 软件使用说明

注:参数设置完成后需要断使能保存参数。

第一步: 建立连接

- (1). 选择正确的 COM 端口,可在设备管理器中查看当前端口号。
- (2). 选择设备地址。
- (3). 点击通讯连接, 若连接正常, 右侧会有数据显示。

第二步:设置回原点参数

校零偏移: 电缸碰到负极限后, 返回多少距离作为原点。

校零速度:回原点的速度。

校零力矩: 以多大的力度去撞电缸硬极限 (根据实际情况去设置)。

第三步:设置运动参数

- (1). 分别运动到两个位置的速度,位置和加速度信息。
- (2). 点动: 电缸按设置的点动速度进行前后运动, 去找到需要的位置。
- (3). 推压功能使用的时候, 前后推压的力度大小设置。
- (4). 回零: 电缸运行到 0 位 (非校零);连续: 电缸按照设置好的位置参数连续动作;单点: 每点击一次,电缸会 从当前位置运动到另一个设置的位置。
- (5). 位置 1 设置: 电缸 JOG 运行时, 运动到需要的位置, 点击位置 1 设置将会把当前位置直接写入位置 1 的信息里, 位置 2 设置同理。
- (6). 参数保存: 所有参数写入完成后, 需要保存参数。
- (7). 故障清除: 电缸报警时清除按钮。

3.485 通讯控制详请参考 485 手册

驱动器内置工业级总线通讯芯片,任何带 RS485 通讯功能的工业设备,都可以按照 Modbus-RTU 协议,直接控制驱动器的运行。如果有需要,最多可以串联 64 台驱动器,在较低的成本下,实现可靠的中到大型驱动器网路的构建。

1. 主站通讯参数

通讯默认参数

波特率	数据位	停止位	校验位
115200	8 位	1 位	无

2. 功能码

功能码	功能定义	格式
0x04	读单个寄存器	WORD
0x03	读单个或者多个寄存器	WORD/DWORD/QWORD
0x06	写单个寄存器	WORD
0x10	写多个寄存器	WORD/DWORD/QWORD

3. 报文格式

数据帧汇总								
操作	数据帧							
	ᅸᆉᄱᆉ	地址域	功能码	寄存器地址		寄存器数量		CRC
读单个寄存器	请求报文	1 字节	0x04	2 5	2 字节		2 字节	
0x04	마스 다 나가 나	地址域	功能码	寄存語	器地址	返回数据		CRC
	响应报文	1 字节	0x04	15	字节	2	字节	2 字节
	\#-\}-\\	地址域	功能码	寄存語	器地址	寄存器数量		CRC
读单/多个寄	请求报文	1 字节	0x03	2 字节		2 字节		2 字节
存器 0x03		地址域	功能码	寄存器地址		返回数据		CRC
	响应报文	1 字节	0x03	15	字节	2n	字节	2 字节
	\=-121C-1-	地址域	功能码	寄存語	寄存器地址		写入数据	
写单个寄存器	请求报文	1 字节	0x06	2 字节		2 字节		2 字节
0x06	마수 다 나면 수	地址域	功能码	寄存器地址		写入数据		CRC
响应报文		1 字节	0x06	2 字节		2	字节	2 字节
	请求报文	地址域	功能码	寄存器地址	寄存器数量	写入数据	写入数据	CRC
写多个寄存器	旧不収入	1 字节	0x10	2 字节	2 字节	1字节	2n 字节	2 字节
0x10	哈萨セ	地址域	功能码	寄存器地址		寄存器数量		CRC
	响应报文	1 字节	0x10	2 字节		2 字节		2 字节